Name:____

TRANSFORMATION OF QUADRATIC FUNCTIONS

-Horizontal Shift

-Vertical Shift

- Strech/Shrink

- Reflection

 $f(x) = -(x+5)^2 + 2$

Let's look at the function!

f(x) = f(x) + C

What does the "+ C " tell us?

It tells us there is a _____! In the _____ direction because it is

 $f(x) = -(x+5)^2 + 2$

* So the whole graph goes _____ units.*

You are adding to the function, moving the y-values.

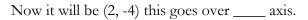
A function takes care of two points (x, f(x)), just like (x,y) but inputs and outputs.

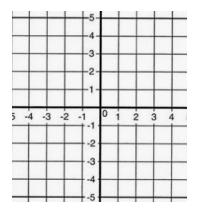
In this case:

The x would be _____

So (x+C) acts as the opposite you would go to the left because it is x-values and moves horizaontally. This is because you x-values are the horizontal values on a graph.

So here we are going to shift ______ units to the ______.


Now let's look at the negaitve sign!


We have talked about reflections what two kinds of reflections are there:

We have f(x) = -f(x) and f(x) = f(-x)

Let's think if we have a point (x,y) which is equal to (x, f(x)), when dealing with functions.

If we have (2,4),

If we have (-2, 4), now it goes over the _____ axis.

++	+	-5-		+	+	+
	+	-4-		+	+	-
		-3-		+	+	+
	+	-2-		+	+	+
++	+	-1-		+	+	+
-4 -3	-2	-1 † -1 -	0 1	2	3	4
-4 -3	-2	-1	0 1	2	3	4
-4 -3	-2	†-1 ·	0 1	2	3	4
-4 -3	-2	-1.	0 1	2	3	4

When you have a negative x- value it goes over the y-value.

So.....

f(x) = -f(x) + (x,-y) causing a reflection over the _____ axis

f(x) = f(-x) + (-x,y) causing a reflection over the _____ axis

Since the negative infront of the (), it is f(x)=-f(x) which means we have a reflection over _____ axis

Let's graph it!

Y -9--8--7--6--5--4--3--2-1 -9 -8 -7 -6 -5 -4 -3 -2 -1 x 0 1 2 3 4 5 6 7 8 9 --2 -3 -4 -5 --6 -7 -8-

Before we do so let's thing back to $f(x) = x^2$

Does it match the graoh on top?