Name: \qquad
Iransformaiton of Quadraic functions
-Horizontal Shift
-Vertical Shift

- Strech/Shrink
- Reflection

Let's look at the function!

$$
f(x)=f(x)+C
$$

What does the "+ C" tell us?
It tells us there is a \qquad ! In the \qquad direction because it is
\qquad -

$$
f(x)=-(x+5)^{2}+2
$$

* So the whole graph goes \qquad
\qquad units.*

You are adding to the function, moving the y-values.
A function takes care of two points ($\mathrm{x}, \mathrm{f}(\mathrm{x})$), just like (x, y) but inputs and outputs. In this case:

The x would be \qquad
So $(x+C)$ acts as the opposite you would go to the left because it is x-values and moves horizaontally. This is because you x-values are the horizontal values on a graph.

So here we are going to shift \qquad units to the \qquad -.

Now let's look at the negaitve sign!
We have talked about reflections what two kinds of reflections are there:
We have $f(x)=-f(x)$ and $f(x)=f(-x)$
Let's think if we have a point (x, y) which is equal to $(\mathrm{x}, \mathrm{f}(\mathrm{x})$), when dealing with functions.
If we have $(2,4)$,
Now it will be $(2,-4)$ this goes over \qquad axis.

If we have $(-2,4)$, now it goes over the \qquad axis.

When you have a negative x - value it goes over the y-value.
So........
$f(x)=-f(x)+(x,-y)$ causing a reflection over the \qquad axis
$f(x)=f(-x)+(-x, y)$ causing a reflection over the \qquad axis

Since the negative infront of the () , it is $f(x)=-\mathrm{f}(\mathrm{x})$ which means we have a reflection over \qquad axis

Let's graph it!
Before we do so let's thing back to $f(x)=x^{2}$

Does it match the graoh on top? \qquad

